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Abstract 

3D laser scanners generate points cloud for real objects in multiple scenes. Thus the registration is needed to put each 

scene in its own right position relative to the other scenes. The challenge of the registration process is to find the 

transformation matrix that realizes the accurate alignment at minimum computation time. This paper proposes a 

registration algorithm based on an objective function of Hausdorff distance.The objective function uses three descriptors 

as its own parameter individually. These descriptors are points coordinates, heat Kernel Signature (HKS) and Gaussian 

curvature (𝜅𝑔). The minimization of objective function (Hausdorff distance) is attained using particle swarm 

optimization (PSO) method.  The comparison showed the algorithm based on distance is the best results. 

 

Keywords: 3D point cloud, Particle Swarm Optimization (PSO), distance, Heat Kernel Signature, Gaussian curvature, 

3D data laser scanner. 

 

           

1 Introduction  

Advanced technologies in Laser scanning have become vital tools in many engineering applications.  It can be captured 

large amount of data within high accuracy and short time.  Laser scanners take physical object’s same size and shape 

into the computer world as a digital three dimensional representation. These scanners generate the group of points 

having particular properties such as (x, y, z, Intensity, RGB) which are called point cloud. Moreover, laser scanning 

technologies are used in many applications such as industrial, archaeology, historical studies, 3D object scanning, 3D 

mapping, 3D localization and cultural heritage [1]. The scanning process of any object (or site) is carried out from 

different positions around the object because of occlusion.  Thus, the scanning process delivers number of scans 

corresponding positions.  In order to construct the digital object (or site) these scans need to register. The registration 

process is performed by finding the optimal values of transformation matrix [2]that realizes the possible good alignment 

between the all scans. The alignment between two scans can be accomplished according certain objective function and 

the methods of its solution.  Several efforts have been made to find methods solving the registration point cloud problem. 

Some of these methods depend on directly point cloud or photometric properties such as Random sample consensus 

(RANSAC), Iterative Closest Point (ICP) and Scale-invariant feature transform (SIFT). RANSAC[3] algorithm was 

developed to deal with  the data  that contains outliers and improve the estimation of the rigid transformation. (ICP) [4] 

algorithm was utilized to get the best rotation and translation that minimizes an error metric based on the distance to 

align two scans. Abbas et al. [5] offered a registration method which utilizes the SIFT algorithm work on distinctive 

features which are extracted from both aerial images and LiDAR intensity data.  

Gruen and Akca[6] used Generalized Gauss-Markoff for estimation the transformation parameters of 3D scenes. 

Myronenko and Song [7] presented an alignment technique for rigid, affine and non-rigid transformation cases, called 

Coherent Point Drift. Potmesil [8] calculated the distance between points to normal  plane to maximize evaluation of  

registration. Zhang [9] proposed a thresholding technique that used a robust statistical method based on the distance 

distribution to limit the maximum distance between scans. Glomb [10] used feature detection method for registration, 

in  which extended Harries descriptor to 3D shapes. Dina et al. [11] applied combined 3D Sobel–Harris operator on 

point cloud to detect the  interest points.  Another class of methods depend on feature which represent the shape as a 

collection of some local feature descriptors.  The advantage of this descriptor is invariant to translation and rotation. 

This descriptor captured geometric arrangement of points, surfaces and objects for solving registration problem. So 

authors depend on descriptors such as Spin image[12], heat kernel signature (HKS) [13]and curvature [14]. Spin image  

[12] descriptor object properties with the robustness to partial views and clutter of local shape   descriptions. Marco et 

al. [15] using spin image for partial views registration. HKS describes the intrinsic local shape based on diffusion scale 

–space analysis. Jian Sun et al. [13]  present a new technique to extract all the information contained in the heat kernel 

and characterizes  the shape up to isometry called heat kernel signature (HKS). Bayumy [16] used  Heat Kernel Signature 

to register scenes at different ranges and optimize solution by an Artificial Bee colony optimization. Jing Huang and  

Suya You [17] presented some descriptor for 3D self-similarity registration such as normal, curvature and photometry  

and also  combined both  geometric and photometric information. The solution of above method is iterative methods.  
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This method is time-consuming, so heuristic method used for reaching solution quickly. Automatic registration process 

using heuristic need a robust global optimizer. Optimization methods are categorized as derivative and derivative free 

methods. The popular examples of derivative methods are gradient such as Newton’s Methods[18]. Pottmann et al.[18] 

register scene by minimizing squared distances to the tangent planes and optimizing using a Gauss-Newton iteration. 
But these methods need good initial values for estimating in order to avoid the local minimum since the transformation 

parameters are generally nonconvex and irregular. Problem of derivative method can   get local minimum. The solution 

of this problem is a derivative free methods such as using Genetic Algorithm [19] and simulated annealing[20]. The 

genetic algorithm (GA), which is one of the global optimization techniques, has been proposed for point cloud 

registrations. Silva et al.[21]proposed a combination between genetic algorithm and hill-climbing to solve range image 

registration problem. Disadvantage of genetic algorithm takes a larger computation time and lacks in fine tuning 

capabilities. Bilbor and Snyder[22] apply simulated annealing(SA) to register 3D point cloud and reduce the 

computation by modified iteratively during the minimization.  This modified is built k-tree around minimizers of the 

cost function. Recently, a global optimization technique called particle swarm optimization has been proposed, which 

is a stochastic, population-based evolutionary computer algorithm.  

 

 The rest of this paper is organized as follows: we introduce in section 2 proposed registration methodology. In section 
3 particle swarm algorithm (PSO) is introduced. In section 4 experimental setup. In section 5 shows Experimental Result 

and section 6 conclusions.       

 

2 Proposed Registration Methodology  

 

The registration can be accomplished by minimizing objective function which relies on the idea of Hausdorff 
distance[23]. Consider, it are Given a model point (moving scene) set M= {𝑚1 , 𝑚2 , …… .𝑚𝑛} and a data point (source 

scene) set S= {𝑠1 , 𝑠2 , …… . 𝑠𝑔}. The registration’s process is achieved by applying the transformation matrix 

(translations 𝒕 and rotations R), which changes the position the model points (M) relative the data points (S). Hence 
Hausdorff distance is evaluated according to that position. The minimization of objective function (Hausdorff distance) 
is attained using particle swarm optimization (PSO) method.   

 

Applying the transformation matrix on M’s set yields to:  

 

                     𝜒𝑀
𝑇 = [

1 0 0
0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
0 − sin 𝜃 𝑐𝑜𝑠𝜃

] [
cos 𝛼 0 𝑠𝑖𝑛𝛼

0 1 0
−𝑠𝑖𝑛𝛼 0 𝑐𝑜𝑠𝛼

] [
𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛽 0
−𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 0

0 0 1

]𝜒𝑀 + [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]                               (1)   

                                            

Where  𝜒  is Cartesian coordinate x, y, z, (θ, α, β)     are the rotation angles around axes x, y, z respectively, (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) 

are the translation along axes x, y, z respectively and T is transformed set.  

 

Objective function (f) (Hausdorff distance (h)) between the two sets (M𝑇, S) yields to: 

 

𝑓 = min(ℎ(𝑆,𝑀𝑇))                                                                                                    (2) 

                                                  ℎ(𝑆,𝑀𝑇) = max
𝑆

(min
𝑀𝑇

(𝑑(𝑠,𝑚𝑇)))                                                                                      (3) 

Our algorithm preforms the registration using three descriptors individually. These descriptors are points coordinates, 

heat Kernel Signature (HKS) and Gaussian curvature (𝜅𝑔).    

Then, The objective function yields to: 

A. Points coordinates          :  ℎ(𝑆,𝑀𝑇) = max
𝑆

(min
𝑀𝑇

(𝑑(𝜒𝑆 , 𝜒𝑀
𝑇 )))       (4) 

B. Heat Kernel Signature    :  ℎ(𝑆,𝑀𝑇) = max
𝑆

(min
𝑀𝑇

(𝑑(𝐻𝐾𝑆𝑆, 𝐻𝐾𝑆𝑀
𝑇 )))       (5) 

C. Gaussian curvature        :   ℎ(𝑆,𝑀𝑇) = max
𝑆

(min
𝑀𝑇

(𝑑(𝜅𝑆, 𝜅𝑀
𝑇 )))       (6) 

  

3 Heat Kernel Signature (HKS) Descriptor 

 
HKS was introduced in 2009 by Jian Sun et al. [13] .  It is based on heat kernel, which is a fundamental solution to 

the heat equation. HKS introduced shape descriptors which are based on the Laplace–Beltrami operator associated 

with the shape[24]. 

Some fact about heat diffusion on Riemannian manifolds present to introduce heat kernel. The heat diffusion process 

given by the heat equation 

(∆ +
𝜕

𝜕𝜏
) 𝑢(𝑥, 𝜏) =  0                                                                                                 (7)  
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Where ∆ denotes the positive semi-definite Laplace Beltrami operator[24], 𝑢(𝑥, 𝜏) describes the amount of heat on the 

surface at a point x and time 𝜏, where x is the spatial domain, and 𝜏 domain. In case of initial conditions 

𝑢(𝑥, 0) = 𝑢0(𝑥) = 𝛿(𝑥 − 𝑧)  it is called the heat kernel and denoted by K (x, z) given by   

 

                                                            𝐾(𝑥, 𝑧) = ∑ 𝑒−𝜆𝑖𝜏𝜙𝑖(𝑥)  𝜙𝑖(𝑧)
∞
𝑖=0                                                                                 (8) 

 

Where 𝜆0 , 𝜆1 , 𝜆2, …… . ≥ 0 are eigenvalues and 𝜙0 , 𝜙1 ,𝜙2 , ……. are the corresponding eigenfunction of the Laplace-

Beltrami operator, satisfying ∆𝜙𝑖 = 𝜆𝑖𝜙𝑖. 

Heat kernel signature shapes descriptor for register object which extract all the information contained in the heat kernel, 

and characterizes the shaping up to isometry. HKS is given by    

 

                                                                   ℎ(𝑥, τ) = 𝐾(𝑥, 𝑥) = ∑ 𝑒−𝜆𝑖𝜏𝜙2
𝑖
(𝑥)∞

𝑖=0                                                                    (9)

  

3.1 Gaussian curvature (𝜿𝒈) 

 
 The principal idea of curvature [25]at a point is to measure, how tangent line changes while moving to the point toward 

the neighbouring points. Let  p ∈  ℝ3 𝑝𝑜𝑖𝑛𝑡, curvature κ of curve C⃗  passing through p defined as  

 

                                                                         𝜅 =
|𝐶 ∗ 𝐶 ′′|

||𝐶 ′||3/2                                                                                                  (10)       

  

The normal curvature 𝜅𝑁 of curve 𝐶  passing through the point P is defined by the following relation, known as 

 

                                                                      𝜅𝑁 = 𝜅 cos 𝛼                                                                               (11) 

 

Where 𝛼 is the angle between the curve’s normal and the normal of surface 𝛨⃑⃗⃗ .The minimum and maximum normal 

curvatures at  𝑝 is principal curvatures that can represent as 𝜅1, 𝜅2 of 𝛨⃑⃗⃗ at p. Gaussian curvature 𝜅𝑔 is defined the product 

of the principal curvatures.  

                                                                                         𝜅𝑔= 𝜅1* 𝜅2                                                                                                  (12)

  

4 Particle Swarm Optimization 

 
Eberhart and Kennedy[26] presented PSO based on affected  by the social behaviour of animals such as swarms of birds 

and fish schooling. The population of PSO called particles, each particle analogous to a bird flying   around in the multi-

dimensional search space exploring for better regions. PSO particles are initialized randomly and then searches for 

optima by update generations. Update the velocity and the position of particles in each generation can be represented 

by: 

                                                       𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝛼1[𝛾1,𝑖(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑘)]+𝛼2[𝛾2,𝑖(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘)]       (13) 

                                                                                     𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (14) 

The vectors 𝑥𝑖
𝑘 and 𝑣𝑖

𝑘are the current position and velocity of the 𝑖 th particle in the 𝑘-th generation. Each particle has 

𝑝𝑏𝑒𝑠𝑡𝑖  is the best position of each individual and 𝑔𝑏𝑒𝑠𝑡 is the global best position observed among all particles up to 

the current generation. The parameters 𝛾 1 ,𝛾 2 ,∈ [0, 1] are uniformly distributed random values and 𝛼1,𝛼2 are 

acceleration constants. 

Our algorithm the fitness value represents the counter number of point correspond that need to be maximized. The 

optimization process starts by initializing particles swarm random positions as six parameter (three rotate and three 

translate) and velocities. Next, for each particle calculate fitness value. This value Compare with the𝑝𝑏𝑒𝑠𝑡𝑖 .If new better 

than current, update  𝑝𝑏𝑒𝑠𝑡𝑖 . Then, Update the position and velocity of a particle by using Eqs.  (13, 14). This process 

is repeated until the maximum iterations is reached or condition of algorithm is satisfied. Result the global optimal 

solution of 𝑔𝑏𝑒𝑠𝑡  is optimal transformation parameters for the calculation of point cloud data, get the final registration 

of point cloud. 

5 Experimental Setup 

 
The algorithm was run on laptop with the following specifications (Processor: Intel(R) Core(TM) i7-4702MQ CPU @ 

2.20 GHz 2.19GHz, installed memory (RAM) 8.00 GB, and System Type: 64-bit Operating system, x64-based 
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processor with Windows edition Windows 8.1©2013 Microsoft Corporation System). The proposed algorithm was 

developed using visual Fortran90.  

 

5.1 Datasets Descriptions   

 
In order to evaluate the quality of the proposed features and comparison methods, a series of experiments have 

been conducted using benchmark dataset and real point cloud scans captured by terrestrial laser scanners. 

 

 

5.1.1 Benchmark 

 
 The Stanford 3D Scanning Repository was a computer graphics 3D test model such as Stanford bunny and Dragon 

model. This was scanned by Cyberware 3030 MS scanner.  

 

First model test was Stanford bunny developed by Greg Turk and Marc Levoy in 1994[27]at Stanford University. This 

mode which consists of 10 scans and total size of scans: 362,272 points. Registration was tested using two from the ten 

scans, two scans registration were 315 degree scan with the top3 scan. One of these two scans contains 35158 points 

(used as Source scene). The other one contains 35921 points (used as moving scene). Both scans in different local 

coordinate systems were shown in Fig (1a).  

 

Second model test was Dragon which consists of 70 scans and total size of scans:  2,748,318 points. Two scans 

registration were dragon Mouth4_0 scan with the dragon Nook2_0 scan. One of these two scans contains 184922 points 

(used as Source scene). The other one contains 207370 points (used as moving scene). Both scans in different local 

coordinate systems were shown in Fig (1b). 

 
 

(a) (b) 

 

                                Fig. 1. Original 3D scan from different datasets. (a) Stanford bunny (b) Dragon. 

 

5.1.2 Measured data in lab Real 3D Point Cloud Data from Terrestrial Lidar 

 
Real precise 3d data is nowadays obtained by using professional 3d laser scanners. On the other hand, efficient, large-

scale 3D point clouds processing is required to process very large amount of data. Terrestrial Light Detection and 

Ranging is a technology for 3D measurement of object surfaces. The experiments were carried out using real data set 

were taken from the 3D laser scanner (I-site). The scanning are conducted by the graphics team in the Informatics 

Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt. All of 

scans were taken from different positions using the terrestrial laser scanner Imaging-System I-site 4400. 

Fig (2a) datasets were collected from the sphinx site in Giza near the city of Cairo. Source scene and moving scene were 

picked for evaluation consist of 18120 and 41205 raw 3D points respectively. Both scans in different local coordinate 

system. 

Fig (2b) datasets were collected from the Babylon Fortress (‘Bawabet Amr) located in old Cairo. All of scans Source 

scene and moving scene were picked for evaluation consist of 458845 and 674575 raw 3D points respectively. 

 

  
(a) (b) 

 

Fig.2 represent point cloud with vertex color that was obtained from the RIEGL LMS-Z620 laser scanner of   

(a) sphinx (b) Bawabet Amr 
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6 Experimental Results 

 
The registration is performed using the particle swarm optimization algorithm (PSO) based on three different descriptors 

(Distance, Heat kernel and Gaussian curvature) as described in section 2. Experiment goal is estimated to the six-

parameter to rigid-body registration of two scenes in different view with robust and effective. To test the robustness and 

effectiveness of the proposed algorithm, applying in the benchmark datasets and compare the performance of our 

algorithms with ICP [28]. 

 

 
 Table 1: The RMSE of registration with using different methods on Stanford Bunny and Dragon datasets 

 
Dataset Method RMSE 

Stanford 

Bunny 

PSO with Distance 0.001 

PSO with Heat kernel 0.163 

PSO with Gaussian curvatures 02..0 

ICP algorithm 029.0 

 

Dragon 

PSO with Distance    0.002 

PSO with Heat kernel 0.210 

PSO with Gaussian curvatures 0.533 

ICP algorithm 0.30 

 

Fig. 3 shows the 3D registration results of Stanford bunny and Dragon. The registration results shown below are based 

on these datasets. From left to right the figure shows two original scanning (a, b) then apply different algorithm to 

registration. First algorithm depend on distance between point cloud and result show in (c, d), second and third algorithm 

depend on descriptor (heat kernel and curvature) represent by (e, f, g, h) respectively. Finally, ICP algorithm which 

can’t alignment two cases as shows in  (i, j). The error of each case represents in table1. 

 

 
    

(a) (c) (e) (g) (i) 

     

(b) (d) (f) (h) (j) 
 

Fig.3.result of different algorithm on Stanford bunny and Dragon datasets. 

All registration method was also tested on the real dataset to verify its applicability on a more cluttered scene. Fig. 4 

shows the 3D registration results of sphinx and Babylon Fortress.  The error in this case shows in table2. It can be seen 

that good performance is achieved on the both scene data by the PSO with Distance registration method. 
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(a) (c) (e) (g) (j) 

     
(b) (d) (f) (h) (k) 

 

Fig (4): shows different algorithm applied on different datasets (a, b) two unregistered scans. (c, d)registration 

after applying our algorithm in distance case. (e, f)Registration after applying our algorithm in Heat kernel case. 

(g, h) Registration after applying our algorithm in Gaussian curvatures case. (j, k) Registration using ICP.  

 

Table 2: The RMSE of registration with using different methods on sphinx and Babylon Fortress datasets 

 
Dataset Method RMSE 

 

Sphinx 

PSO with Distance    0.14 

PSO with Heat kernel 0.28 

PSO with Gaussian curvatures 0.20 

ICP algorithm 0.39 

 

Babylon 

Fortress 

PSO with Distance    0.14 

PSO with Heat kernel 0.21 

PSO with Gaussian curvatures 0.15 

ICP algorithm 0.19 

 

7 Conclusions  

 
In this research, a new registration techniques is presented by using particle swarm with three different descriptors 

(distance, heat kernel, Gaussian curvature). The experiments are done on branchmark datasets and real data from 3D 

laser scanner. From the results, the used distance descriptor outperformed the heat kernel and Gaussian curvature 

descriptor in accuracy. While, Heat kernel and Gaussian curvature descriptor take less time than distance descriptor. 
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